
Racah-type expressions for the 6j coefficients of the orthosymplectic superalgebra osp(1,2)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 6699

(http://iopscience.iop.org/0305-4470/25/24/021)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. k. Math. Gen. 25 (1992) 66994711. Printed in the UK 

Racah-type expressions for the 6 j  coefficients of the 
orthosymplectic superalgebra osp(1,Z) 

J J Labarthe 
laboratoirr Aim6 Cotton, UniversitC de Paris XI. F91405 Onay Chiex, France 

Received 13 July 1992 

AbslracL Using generating functions, various aplicit expressions for the 6 j  mefficienls of 
the osp(l,2) superalgebra are derived. Same of these apressions bear a close resemblance 
10 the Racah formula for the su(2) iij mefficients. As a mnsequence it is shown that 
the mp(1,Z) 6 j  mefficienrs exhibit Regge symmetlies. 

1. Introduction 

In this work we establish formulae for the 6 j  coefficients of the mp(1,2) superalgebra, 
sometimes denoted by B(0,l). The finite-dimensional representations of this 
superalgebra are labelled by a superspin which reminds us of the su(2) spin 
label. In fact, several authors have developed the Racah-Wigner calculus for the 
osp(1,2) superalgebra, showing that many properties of the su(2) Racah-Wigner 
calculus (Clebsch-Gordan coefficients, 3 j  and 6 j  symbols, tensor operators, Wigner- 
Eckart theorem, Wigner and Racah operators, Biedenharn-Elliott identity,. . . ) 
have their counterparts in the osp(l,2) superalgebra (Scheunert et a1 1977, 
Berezin and Tblstoy 1981, Zeng 1987a. b, Zeng and Yuan 1988, Minnaert and 
Mozrzymas 1992a. b). 

Figure 1. JUT graph of the 6 j  meflicienl. 

By coupling and recoupling three superspins, Zeng (1987a) defined Racah (6 j )  
coefficients that are invariant but for a possible change of sign in the 4! = 24 
permutations of the vertices of the tetrahedron (figure 1) representing the coefficients. 
Minnaert and Mozrzymas (1992a) defined more symmetrical 6 j  coelficients which 
remain completely invariant in these 24 permutations. In this paper we study these 
latter coefficients, slightly modified by multiplication by an invariant phase factor, 
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In section 2, we recall the generating function of su(2) 6 j  coefficients. In section 
3, we start from an expression of the osp(1,2) 6 j  coelficients as a sum of eight su(2) 6 j  
coefficients and define generating functions, distinguishing eight classes of coefficients. 
In sections 4-6, for these various classes, the generating functions are calculated and 
expressions for the coefficients are derived. Some of these expressions bear a close 
resemblance to the Racah formula for the su(2) 6 j  coefficients, from which it follows 
that the osp(l,2) 6j  coefficients present not only the 24 symmetries of the regular 
tetrahedron but also additional Regge-type symmetries. We also give expressions 
in terms of the chromatic polynomial, which can be viewed as a terminating 4F3 
hypergeometric series. 

2. Ibe su(2) 6 j  coefficients 

We define a number of notations, most of which are adapted from Bargmann (1%2), 
(see also Biedenharn and Van Dam (1965, p 300-16)) and from Labarthe (1975). 
The su(2) 6 j  coefficient 

is represented in figure 1 by its Jucys graph (see Jucys and Bandzaitis 1965). For 
vertex 0, where the three spins l,,, 1, and l,, meet, we define 

vu = l,, + 10, + 1, L,, = v, - 21,, Lu2 = vu - 21,, L ,  = vu - 2lU3. 

(2.2) 

We call L,, L ,  and L, the indices of vertex 0. The triangle condition (l,,, l,, l m )  
is equivalent to the condition: L,, E W (1 < i < 3) where W is the set of non-negative 
integers. 

Similarly to equation (2.2), V, and the indices Lij ( z , j  = 0, 1, 2, 3; i # j )  
are defined for the 4 triangle conditions of the 6 j .  We put together the indices as 
L = ( L , , ,  L,, ..., L32). When the spins l i j  in array (2.1) take all possible mlues 
compatible with triangle conditions, L runs on a subset E of RI” (the indices are not 
independent: there are six relations like L,, + L,, = L,, + L ,  = 21u3). We also 
denote by E the set of the corresponding arrays of six spins 

L = [ 4 2  “1 
4 3  4 2  

(using the Same symbols E and L). With this convention, { L )  denotes the value of 
the 6 j  coefficient (2.1). 

We make the following definitions (see Labarthe 1986). The operations L + L’ 
and p L  for L ,  L’ E E and p E W are the usual matrix operations. It is easily seen 
that L + L’ E E and p L  E E (that is E is closed under these operations). An 
element L E E is called ertremal if it cannot be decomposed as a sum L = L‘ + L” 
of non-zero elements L’, L” E E. There are 7 extrema1 elements, denoted by e, 
(1 < i < 7), which are defined in table 1. 
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lbbk 1. The cxtremal elements e, = [ 2 :: :] and the associated monomials 

I, = t[',I (1 6 i 6 7). Nole lhe useful relation ztzzz3 = i4z5z,,z, (see equation (2.8)). 

The generating function Q, of the 6 j  is an entire function of 1 = ( tu , ,  t,, ..., 
f32) given 

1 
52 Q, = NL{L)1[L1 = - 

LEE 

where N ,  is the normalization constant 

112 (v, + I ) !  
N L  = (gnj,i Lij!)  

and where dL] = t?t$ . . . ttp. The generating function Q, is expressed in terms 
of 

s = 1 + Z ]  + z2 + z3 + z4 + z5 + Z6 + z7 (2.5) 

where the zi are given in table 1. 
The expansion of l /Sz  in equation (2.3) gives the mlue of the 6 j  

where la1 = a1 + a2 + . . . + a7 and where the summation is over the a = (a,, a2, 
. . . , a,) E W7 such that 

7 

L = caiq 
i = l  

(2.7) 
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Since the extremal elements ei  are linked by 

el + e ,  + e3 = e4 + e5 + eo + e ,  (2.8) 

the sum in equation (2.6) can be written in terms of a summation on one integer 
thus recovering Racah's formula for the 6 j .  

Let us recall the interpretation of equation (2.6) in the chromatic method 
of evaluating Penrose spin networks (see Penrose 1979, Moussouris 1979 and 
Kauffman 1991). For each decomposition of L in la1 extremal elements (2.7), we 
assign to the extremal elements I Q I  different colours taken from a set of n colours (a  
is supposed large enough). The number of ways of decomposing L in these coloured 
extremal elements is 

n(n  - 1)" . ( n  - la1 + 1) 
a,!a,!a3!a4!a5!a6!a,! 

P ( L , n )  = (2.9) 

where the summation is Over the a such that equation (2.7) holds. We call P( L, n )  
the chromatic polynomial: for given L ,  it is defined for any n by equation (2.9) as 
a polynomial in n that takes integer values when n is a positive or negative integer. 
The 6 j  coefficient (2.6) and the chromatic polynomial can be written in terms of 
4F3 hypergeometric functions with unit argument (see Biedenharn and b u c k  (1981, 
p 429)). Evaluating the chromatic polynomial at n = -2, which corresponds to the 
'number of mlours' of spin networks, permits to write equation (2.6) as 

{L) = N,'P(L,-2). (2.10) 

The symmetries of the 6 j  (including the Regge (1959) symmetries) are easily 
obtained from equation (2.6). They correspond to permutations of extremal elements 
within (el, e,, e3)  and (e4, eS, e6. e,). These 6 x 24 = 144 permutations leave 
equations (2.4), (2.6) and (2.8) unchanged. 

3. The csp(1,L) 6j coefficients 

The finite-dimensional representations of the superalgebra osp(l,2) are labelled by a 
superspin j which takes integer or half-integer values j = 0, i, 1, ... (see Pais and 
Rittenberg 1975, Scheunert, Nahm and Rittenberg 1977, Hughes 1981 and Berezin 
and lblstoy 1981). The representation j has dimension 4 j  + 1. When narrowed to 
the su(2) algebra, it splits into two (or one for j = 0) representations of su(2) 

j - 1  = j  and 1 = j -  1/2 (if j #O). (3.1) 

We also write this in the form I = j - k/2 with k = 0 or 1. These representation 
spaces are graded, all states in I = j have the same degree denoted by A (A can take 
the values 0 and 1) and all states I = j - 1/2 have degree 1 - A. 

The coupling of two superspins j ,  and j ,  yields the values j3 = lj, - j21: 
l j ,  - j,( + 1/2, , . . , j ,  + j, of the resultant superspin. The degrees of the coupled 
states are determined by 

A3 A, + A, + 2(j, + j ,  + j,) (mod 2) (3.2) 
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where Ai specifies the degree in representation space ji (i = 1, 2, 3). 
We define the osp(l,2) 6 j  coefficients by 

where 

j,, = l , ,  + k,,/2 (kmn = 0 or 1) 

+ =  I ~ I + ~ , , ~ , + ~ , ~ l 3 + ~ , k , ,  (3.4) 

(0 < m < n < 3) 

Ikl = ~ U I  + kuz + + k, + k13 + IC,,. 
The sum in equation (3.3) is over the su(2) spins l , ,  that correspond to the splitting 
(3.1) of the osp(1,2) spins jmn. In equation (3.3), for each vertex i in figure 1 there 
appears a verlex fuclor Fj which depends on the j,, and l , ,  (with m or n = i )  
that meet at vertex i. In table 2, we give the values of Fu, the other Fj being defined 
similarly. 

Tabk Z The v e n a  facton Fo and fo at venex 0 for the eight possible values of 
kol = Z( j o l  - lot j. ko2 = 2( jm - im j and ka, = 2( ju, - im j .  Notice that ihe various 
vena bctors Fu are  obtained one fmm the other, but for a phase. by effecting for each 
change of koi the mirmr transformation la - -1% - I .  

Definition (3.3) is independent of the A,, that specify the degrees in the spaces 
j,,,,. It has been arrived at by removing the dependency on A,, from the osp(l,2) 
6j  coefficienu defined by Minnaert and Mozrzymas (19%). In the appendix, we give 
the Racah (6j) coefficients defined by Zeng (1987a) and Minnaert and Mozrzymas 
(1992a) in terms of the 6 j  coefficients (3.3). 

As in equation (2.2), for the three coupled superspins at vertex 0, j,,, j ,  and j,, 
we define 

w, = &l+j,,+j, J,, = w,-2j,, Jvr = W,-2j, Je, = w,-2j,, 
(3.5) 

and analogous quantities W,, J,, at the other three vertices m = 1, 2, 3. The 
supertriangle condition (j,,, jm, j,) is now equivalent to the condition that the 
indices Ju, at vertex 0 are non-negative integers or half-integers. 

When the superspins j,, in the 6 j  take all possible values compatible with 
supertriangle conditions, J = ( Jul, Ju2, . . . , J3,) runs on a set E, that contains the 
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set E of possible su(2) indices. As in section 2, we also use symbol J to represent the 
array of six spins j,,, for example in (J), to denote the value of a 6 j  coefficient. 
The set E,, also identified with the set of six spin arrays that satisfy the supertriangle 
conditions of the 6 j ,  is closed under addition and under multiplication by a non- 
negative integer. The ei (1 < i < 7) of table 1 are still extremal elements in E,, but 
there are now 13 other extremal elements g i ,  0; (1 < i < 6) and g7. The elements 
g3, e3 and g7 are given in table 3. The other gi, 8; differ from g3, g3 by exchanging 
spin j, (its values are 0 or 1) with another one (jul for g1 and &, ...). 

lhbk 3. ' h e  exlremal elemenls g), j? and 87. defined as arrays [!'I Jm J m ]  and in 

terms of the e; (table 1). ' h e  other g , ,  j i  (I 6 i < 6) differ from 93, g? by =changing 
spin j, (its values are 0 or 1) with another one 0'01 for g l  and 01,  ...). 

JU 113 JIZ 

The asp(l,2) indices J E E, can be classified in eight classes as follows (in other 
words the set E, is the union of eight disjoint subsets E; (0 < i 6 7)): Eu = E is 
the class of indices that are also su(2) indices; Ei (1 < i < 6) is the class of indices 
of the form gi + U or ai + U with U E E, E, is the class of indices of the form 9, + U 
with U E E. This classification is the same (in different order) as in Zeng (1987a) 
where the parities of 2W, (0 < m < 3) are used to characterize the different classes. 

For the osp(l,2) 6 j  coefficients, we define a normalization constant 

where LzJ designates the greatest integer smaller than or equal to z. With this 
definition we rewrite equation (3.3) as 

where the vertex factors f i  take now integer values (table 2 gives the vertex factor fu 
for vertex 0). In order to obtain expressions for the 6 j  coefficients it is convenient 
to consider the classes Ei (0 < i < 7) separately. So, using similar notations as for 
equation (2.3). we define the generating function q i  (0 < i < 7) of the osp(1,2) 6 j  
coefficients with indices in E; as the entire function of t,, given by 

112 . 
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where A' = 2( J - L)  are the indices that correspond to the array 

po 2; ku3] , 
k12 

The sum Over li in equation (3.8) is limited to the values of this array with k,, = 0 
or 1 and such that there exists L E E for which L + h-/2 E E i .  

4. Calculation of { J ) , :  case J E E 

When J E E, the K in equation (3.8) takes the eight values such that I i /2  E E. 
These are in fact I< = 0 and I< = 2ei (1 < i < 7) (see table 1). The factor 
(-l)~fof,f2f3t[K/2] has value 1 for li = 0 and z j  (see table 1) for li = 2.3 
(1 < i < 7). Using equations (2.3) and (2.5) we obtain 

1 
S '  

QU = M J { J ) , t I J l  = - 
J E E  

By expanding 1/S in equation (4.1) we derive an expression similar to equation (2.6) 
for the value of the 6 j  

where the summation is over the a E W7 such that J = E:=, n j e ; .  
1 Solving J = aiei  for the ai (1 < z < 7) in terms of j,, and la1 = x 

a 1  = j ,  + j ,  + j13  + j12 - = - j U ,  - j 1 3  - j l 2  

a2 = j " ,  + j ,  + j, + j12 - 
a3 = j U 1  + j U 2  + jZ? + j13 - 

a h  = x- j ,  - j, - j l ,  

a, = x - j ,  - j,, - j ,  
(4.3) 

a4 = - j U l  -jU2 -jLU 

shc*s ciip~iiii~j. ihe siiiiiiiiatioi, ii, eq.uaiioi, ('$2) Ovei uiteger sui-ii i.nai ihe 
ai (1 < i < 7) are non-negative integers. 

polynomial (2.9) evaluated at n = -1 
The d u e  of the 6 j  coefficient can also be written in terms of the chromatic 

{ J ) *  = M;IP(J,-l). (4.4) 

mpji,ij (jj symboi { J ] ,  for j E E From quaiion +j we 
presents the same 144 Regge symmetries as the su(2) 6 j  symbol. 

the summation formula 
Finally, let us mention that equation (4.1), written in the form @,S = 1, gives 

where J is fixed and where the summation is Over the eight d u e s  J' = J ,  J' = J - e i  
(1 < i < 7). The delta function on the right has value 0 except for J = 0 for which 
it takes the value 1. 
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5. Calculation of { J ) , :  case J E E ,  

All cases Ei (1 < i < 6) are similar. We treat the case J E E,. The IC in equation 
(3.8) takes eight values which are given in table 4 by the corresponding values of 
k,,,,. The factor (-l)~ffof,f2f3 now depends on the indices L,,. So, for the first 
value of IC in table 4, we have ( - l )~f fof l f2f3  = -LzILl2.  Replacing the indices 
L,, by operators e,,, for instance 

a a a 
LIZ i e], = tI2- = 2,- + zg- 

at,, a z ,  aZ6 
we can carry out the summation Over L in equation (3.8) 

where the operators R,  are detailed in table 4 and Q, is the generating function 
(2.3) of the su(2) 6 j  coefficients. Applying the operators RK to Q = 1/S2, we can 
express q, in terms of the zi as 

Relations (2.5) and Z,Z ,Z~  = z4z5zgz1 have been used to derive this equation. 

lhble 4. Calculation of equation (5.2). The li are given by their kmn values. The 
relation (T3T4T1)112 = ( ~ t ~ 2 ~ ~ : 6 ) t 1 2 ~ 3 / ( : s : ~ )  is uwrul when applying the operator 
RI< to *, 

~ O I  k, k03 k~ k13 k t ~  RI< 
0 0 0 0 Cl 1 -(Z3:42i)t12&&?tLt2 

o l l o l n  (*1*2%*6)'" h t . 2 0  213 

1 0 1 1 0 0  ( iI i2 zs T6)ll2 & e to 27.3 
1 1 0 I 1 1 - ( s * r * l ) ' l 2 ( i l o + L , 2 + 2 1 3 + 2 ) ( i a + i z l + L a + 2 )  

n 0 0 1 1 0 -(z3z4zl)~12&t. t ,2U 

1 0 1 0 1 1 - ( r r i * z r * a ) ' ~ ~ ~ Z 2 1 ( e t 0 + i I ~ + 2 t , + 2 )  

1 1 0 0 n 0 - ( z 3 * 4 z l ) ~ ~ ? ~ 2 t o L * 0  

0 1 1 1 0 1 - ( I I : 2 ~ s * 6 ) t 1 2 ~ L t 2 ( 2 3 0 + ~ Z I + Z U + 2 )  

.. 
We obtain a formula for the 6 j  coefficient { J ] ,  (.I E E,) by expanding in 

equation (5.3). The coefficient { J ) ,  is expressed as a sum over the decompositions 
of J in the forms 

1 
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where a, d E W7 

This gives an expression in terms of 2 chromatic polynomials evaluated at n = -3 

{.qS = 2M;' (P (  J - g3, -3) - P( J - a) ,  -3)). (5.6) 

We can recast equation (5.5) as a sum over the decompositions of J in the form 

where p E W7 

The decompositions (5.4) correspond to the values p = 2a + (O,O,  1.1,0,0,1) and 
0 = 26 + (1, 1,0,0,1,1,0) in decomposition (5.7). 

Although equation (5.8) is quite similar to equation (2.6), we do not obtain all 
144 Regge symmetries. Indeed, when we permute extrema1 elements within (el, e2.  
e ) )  and (e4, e5, eo, e,), for given 0, it can happen that the sum in equation (5.7) is 
no more in E, (giving j,, = for example). The permutations that leave J in E, 
can be obtained by combining the 2 x 2 x 2 permutations that leave the three pairs 
(el, e2), (e4, e,) and ( e s ,  eo) unchanged (so that g3 and a3 also remain unchanged) 
with six permutations that change g3 into gi (1 < i < 6). So, there are in fact 
8 x 6 = 48 symmetries. They include of course the 24 permutations of the vertices 
of the tetrahedron in figure 1. One example of the remaining symmetries is given by 
the exchange e ,  - e2 

iu, + j, + j,, + j, 
2 

(iU1 3 ,  Jlu>,= [ c - J o  c =  
j23 j13 312 c -  3Ul c - ju ,  A 2  

(5.9) 

Noting that for 

we have 

O 0  E E  J u =  J -  [o  0 1/21 

we may wonder whether { J ) ,  can he expressed in terms of the chromatic polynomial 
P ( J u ,  n). That this can be done we show as follows. Writing equation (5.3) as 

Z4Z7 1 / 2  Z) - Z5Z6 

.3=2(,) s3 (5.10) 
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we get be expanding S-3 

1 ( - 1 p  IcYl!w(a) 
t J1a  = MJc al!a2!a3!aq!a5!ah!a7! (5.11) 

where w ( a )  = -(la1 + l)a3 - a5a6 and where the sum is over the decompositions 
of Jo in the form 

(5.12) 

By solving equation (5.12) for a in terms of J and lal, in a similar way as in 
equation (4.3), we can rewrite w(a) in the form 

w ( a )  = 23'12(1el + 1) - AJ (5.13) 

where 

AJ = (W2 + 1/2)(W1+ 1/2) = (J', + j ,  + j 1 2  + ~ / ~ ) ( J ' u I  + j l 3  t ~ I Z  + 1/21, 
(5.14) 

Substituting equation (5.13) in equation (5.11), we arrive at an expression in terms 
of the chromatic polynomial 

{JI8 = MF1(2j1zp(Jo,-2) - A j P ( J o , - l ) ) .  (5.15) 

6. Calculation of { J } s :  case J E E ,  

We evaluate equation (3.8) when J E E7 in the same way as in the preceding section. 
IC runs on a set of eight values as before, but now the factors ( - l ) ~ f o f l f 2 f 3  are of 
degree 4 in the L-?.  The - generating - function Q 7  can be arranged as 

Q7 = 6 ( ~ ~ ~ ~ ~ 3 ) 1 ' z  (1  + .; + .: + .: - 2(21 + 2z + z3 + zIz2  + z123 + zzz3) s5 
- (2 :  + 2: + 2: + 2:) 

t 2(2+'5 + 2426 + 2427 + 2 5 2 6  + 2 5 2 7  + 2 6 2 7 ) )  (6.1) 

which B a symmetric function in (z l ,  zz, z 3 )  and (z4, z5, z6,  z7). It can be 
remarked that, rather mysteriously, the large polynomial in equation (6.1) looks like 
the expansion of Sz, except that some signs have changed and that some cross 
products have vanished. 

By expanding S-5 in equation (6.1) we obtain a formula Cor the 6 j  coelficient 
{ J } $  ( J  E E,) as a sum over the decompositions of J in the form 
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where a E N7 

The factor w(a) which is symmetric in the permutations of (al ,  a*, a,) and (a4, 
as, a6, a7) is given by 

4.) = 3(1+ + a 2  + 03) + 2(a4 + as + a g  + a,) 
+a:+a:+a:+ a;a;. (6.4) 

16;<;67 

We can express equation (6.3) in terms of the chromatic polynomial P( J - g7, n) 
in the same way as at the end of section 5. By solving equation (6.2) for L) in terms 
of J and (a(, we rewrite w ( a )  in the form 

1 4 + 3  A ,  
+T w(a) = -6- 

3! 

where, for J k e d ,  A, does not depend on any peculiar decomposition (6.2). Putting 

UJP h2YP 

A, = 4r + 2 0 +  3. (6.7) 

Substituting equation (6.5) in equation (6.3). we see that for J E E, the 6j  
coefficient { J ) s  can be expressed in terms of the chromatic polynomial as 

{ J ) s  = MT'(-6P(J - 97, -4) + A ,  P( J - y,, -3)). (6.8) 

From equation (6.3) we easily obtain that the asp(l,2) 6j symbol {J}, for J E E7 
possesses the same 144 Regge symmetries as the su(2) 6 j  symbol. 

7. Conclusion 

In conclusion, let us point out a subject where the explicit formulae obtained in this 
work might be useful. The subject is the study of non-trivial ?.eras of the 6j by 
means of Diophantine equations based on explicit formulae, as was done in the case 
of su(2) 6 j  coefficients (see for example Beyer, b u c k  and Stein 1986, Labarthe 1987 
and Srinivasa Rao and Chiu 1989). Examples of zeros for J E E3 are given by 
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and 

where a and b are integers and j is integer or half-integer. These two 6 j  are related 
by Regge symmetry (5.9). The vanishing of these coefficients follows from equation 
(5.6) and P(J - g3, -3) = P(J - a3,  -3) that is readily verified since there is only 
one term in the summation of both chromatic polynomials. The vanishing of 

(corresponding to a = b = 1) for any j has been established by Minnaert and 
Mozrzymas (1992b) by considering a chain of superalgebras. 

Appendix 

The osp(1,2) 6 j  coefficients defined by Minnaen and Mozrzymas (1992a) are related 
to the 63 coefficients (3.3) by 

(A.1) j U 1  j w  ?ut 
SR 

j Z 3  j 13  312 

with 

8 = 2W1X, +2W2X1, + 2W3XI2 XulX, + XU2Xl3 + X,3X,2 (mod 2) (A2) 

where W,,, is defined as in equation (3.5). Equation ( k l )  follows from equation (39) 
of Minnaert and Mozrzymas (1992a) by summing over all M and using their equations 
(24), (38) and (A13). The equivalence of the two forms of 8 given in equation (A.2) 
results from relations like equation (3.2) which occurs for each coupling in the 6.i. 

The Racah coefficients defined by Zeng (1987a) in his equations (4.9-4.16) are 
related to the 6 j  coefficients (3.3) by 

where 
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