Racah-type expressions for the 6 j coefficients of the orthosymplectic superalgebra $\operatorname{osp}(1,2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 256699
(http://iopscience.iop.org/0305-4470/25/24/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:46

Please note that terms and conditions apply.

Racah-type expressions for the $\mathbf{6} \boldsymbol{j}$ coefficients of the orthosymplectic superalgebra osp $(1,2)$

J J Labarthe
Laboratoire Aimé Cotton, Université de Paris XI, F91405 Orsay Cedex, France

Received 13 July 1992

Abstract

Using generating functions, various explicit expressions for the $6 j$ coefficients of the $\operatorname{osp}(1,2)$ superalgebra are derived. Some of these expressions bear a close resemblance to the Racah formula for the $\operatorname{su}(2) 6 j$ coefficients. As a consequence it is shown that the $\operatorname{osp}(1,2) 6 j$ coefficients exhibit Regge symmetries.

1. Introduction

In this work we establish formulae for the $6 j$ coefficients of the $\operatorname{osp}(1,2)$ superalgebra, sometimes denoted by $\mathrm{B}(0,1)$. The finite-dimensional representations of this superalgebra are labelled by a superspin which reminds us of the su(2) spin label. In fact, several authors have developed the Racah-Wigner calculus for the $\operatorname{osp}(1,2)$ superalgebra, showing that many properties of the $\operatorname{su}(2)$ Racah-Wigner calculus (Clebsch-Gordan coefficients, $3 j$ and $6 j$ symbols, tensor operators, WignerEckart theorem, Wigner and Racah operators, Biedenharn-Elliott identity,...) have their counterparts in the $\operatorname{osp}(1,2)$ superalgebra (Scheunert et al 1977, Berezin and Tolstoy 1981, Zeng 1987a, b, Zeng and Yuan 1988, Minnaert and Mozrzymas 1992a, b).

Figure 1. Jucys graph of the $6 j$ coefficient.

By coupling and recoupling three superspins, Zeng (1987a) defined Racah ($6 j$) coefficients that are invariant but for a possible change of sign in the $4!=24$ permutations of the vertices of the tetrahedron (figure 1) representing the coefficients. Minnaert and Mozrzymas (1992a) defined more symmetrical $6 j$ coefficients which remain completely invariant in these 24 permutations. In this paper we study these latter coefficients, slightly modified by multiplication by an invariant phase factor,

In section 2, we recall the generating function of su(2) $6 j$ coefficients. In section 3, we start from an expression of the $\operatorname{osp}(1,2) 6 j$ coefficients as a sum of eight $\operatorname{su}(2) 6 j$ coefficients and define generating functions, distinguishing eight classes of coefficients. In sections 4-6, for these various classes, the generating functions are calculated and expressions for the coefficients are derived. Some of these expressions bear a close resemblance to the Racah formula for the $\operatorname{su}(2) 6 j$ coefficients, from which it follows that the $\operatorname{osp}(1,2) 6 j$ coefficients present not only the 24 symmetries of the regular tetrahedron but also additional Regge-type symmetries. We also give expressions in terms of the chromatic polynomial, which can be viewed as a terminating ${ }_{4} F_{3}$ hypergeometric series.

2. The $\operatorname{su}(2) 6 j$ coefficients

We define a number of notations, most of which are adapted from Bargmann (1962), (see also Biedenharn and Van Dam (1965, p 300-16)) and from Labarthe (1975). The su(2) $6 j$ coefficient

$$
\left\{\begin{array}{lll}
l_{01} & l_{02} & l_{03} \tag{2.1}\\
l_{23} & l_{13} & l_{12}
\end{array}\right\}
$$

is represented in figure 1 by its Jucys graph (see Jucys and Bandzaitis 1965). For vertex 0 , where the three spins l_{01}, l_{02} and l_{03} meet, we define

$$
\begin{equation*}
V_{0}=l_{01}+l_{02}+l_{03} \quad L_{01}=V_{0}-2 l_{01} \quad L_{02}=V_{0}-2 l_{02} \quad L_{03}=V_{0}-2 l_{03} \tag{2.2}
\end{equation*}
$$

We call L_{01}, L_{02} and L_{03} the indices of vertex 0 . The triangle condition (l_{01}, l_{02}, l_{03}) is equivalent to the condition: $L_{0 i} \in \mathbb{N}(1 \leqslant i \leqslant 3)$ where \mathbb{N} is the set of non-negative integers.

Similarly to equation (2.2), V_{i} and the indices $L_{i j}(i, j=0,1,2,3 ; i \neq j)$ are defined for the 4 triangle conditions of the $6 j$. We put together the indices as $L=\left(L_{01}, L_{02}, \ldots, L_{32}\right)$. When the spins $l_{i j}$ in array (2.1) take all possible values compatible with triangle conditions, L runs on a subset E of \mathbb{N}^{12} (the indices are not independent: there are six relations like $L_{01}+L_{02}=L_{31}+L_{32}=2 l_{03}$). We also denote by E the set of the corresponding arrays of six spins

$$
L=\left[\begin{array}{lll}
l_{01} & l_{02} & l_{03} \\
l_{23} & l_{13} & l_{12}
\end{array}\right]
$$

(using the same symbols E and L). With this convention, $\{L\}$ denotes the value of the $6 j$ coefficient (2.1).

We make the following definitions (see Labarthe 1986). The operations $L+L^{\prime}$ and μL for $L, L^{\prime} \in E$ and $\mu \in \mathbb{N}$ are the usual matrix operations. It is easily seen that $L+L^{\prime} \in E$ and $\mu L \in E$ (that is E is closed under these operations). An element $L \in E$ is called extremal if it cannot be decomposed as a sum $L=L^{\prime}+L^{\prime \prime}$ of non-zero elements $L^{\prime}, L^{\prime \prime} \in E$. There are 7 extremal elements, denoted by e_{i} $(1 \leqslant i \leqslant 7)$, which are defined in table 1 .

Table 1. The extremal elements $e_{i}=\left[\begin{array}{lll}l_{01} & l_{02} & l_{03} \\ l_{23} & l_{13} & l_{12}\end{array}\right]$ and the associated monomials $z_{i}=t^{\left[e_{1}\right]}(1 \leqslant i \leqslant 7)$. Note the useful relation $z_{1} z_{2} z_{3}=z_{4} z_{5} z_{6} z_{7}$ (see equation (2.8)).

$$
\begin{array}{ll}
e_{1}=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right] & z_{1}=t_{01} t_{10} t_{23} t_{32} \\
e_{2}=\left[\begin{array}{lll}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right] & z_{2}=t_{02} t_{20} t_{13} t_{31} \\
e_{3}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right] & z_{3}=t_{12} t_{21} t_{03} t_{30} \\
e_{4}=\left[\begin{array}{lll}
0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] & z_{4}=t_{10} t_{20} t_{30} \\
e_{5}=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0
\end{array}\right] & z_{5}=t_{01} t_{21} t_{31} \\
e_{6}=\left[\begin{array}{lll}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right] & z_{6}=t_{02} t_{12} t_{32} \\
e_{7}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right] & z_{7}=t_{03} t_{13} t_{23} \\
\hline
\end{array}
$$

The generating function Φ of the $6 j$ is an entire function of $t=\left(t_{01}, t_{02}, \ldots\right.$, t_{32}) given by

$$
\begin{equation*}
\Phi=\sum_{L \in E} N_{L}\{L\} t^{[L]}=\frac{1}{S^{2}} \tag{2.3}
\end{equation*}
$$

where N_{L} is the normalization constant

$$
\begin{equation*}
N_{L}=\left(\prod_{i=0}^{3} \frac{\left(V_{i}+1\right)!}{\prod_{j \neq i} L_{i j}!}\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

and where $t^{[L]}=t_{01}^{L_{01}} t_{02}^{L_{02}} \ldots t_{32}^{L_{32}}$. The generating function Φ is expressed in terms of

$$
\begin{equation*}
S=1+z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}+z_{7} \tag{2.5}
\end{equation*}
$$

where the z_{i} are given in table 1.
The expansion of $1 / S^{2}$ in equation (2.3) gives the value of the $6 j$

$$
\begin{equation*}
\{L\}=\frac{1}{N_{L}} \sum_{\alpha} \frac{(-1)^{|\alpha|}(|\alpha|+1)!}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!} \tag{2.6}
\end{equation*}
$$

where $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{7}$ and where the summation is over the $\alpha=\left(\alpha_{1}, \alpha_{2}\right.$, $\left.\ldots, \alpha_{7}\right) \in \mathbb{N}^{7}$ such that

$$
\begin{equation*}
L=\sum_{i=1}^{7} \alpha_{i} e_{i} \tag{2.7}
\end{equation*}
$$

Since the extremal elements e_{i} are linked by

$$
\begin{equation*}
e_{1}+e_{2}+e_{3}=e_{4}+e_{5}+e_{6}+e_{7} \tag{2.8}
\end{equation*}
$$

the sum in equation (2.6) can be written in terms of a summation on one integer thus recovering Racah's formula for the $6 j$.

Let us recall the interpretation of equation (2.6) in the chromatic method of evaluating Penrose spin networks (see Penrose 1979, Moussouris 1979 and Kauffman 1991). For each decomposition of L in $|\alpha|$ extremal elements (2.7), we assign to the extremal elements $|\alpha|$ different colours taken from a set of n colours (n is supposed large enough). The number of ways of decomposing L in these coloured extremal elements is

$$
\begin{equation*}
P(L, n)=\sum_{\alpha} \frac{n(n-1) \cdots(n-|\alpha|+1)}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!} \tag{2.9}
\end{equation*}
$$

where the summation is over the α such that equation (2.7) holds. We call $P(L, n)$ the chromatic polynomial: for given L, it is defined for any n by equation (2.9) as a polynomial in n that takes integer values when n is a positive or negative integer. The $6 j$ coefficient (2.6) and the chromatic polynomial can be written in terms of ${ }_{4} F_{3}$ hypergeometric functions with unit argument (see Biedenharn and Louck (1981, p 429)). Evaluating the chromatic polynomial at $n=-2$, which corresponds to the 'number of colours' of spin networks, permits to write equation (2.6) as

$$
\begin{equation*}
\{L\}=N_{L}^{-1} P(L,-2) \tag{2.10}
\end{equation*}
$$

The symmetries of the $6 j$ (including the Regge (1959) symmetries) are easily obtained from equation (2.6). They correspond to permutations of extremal elements within (e_{1}, e_{2}, e_{3}) and ($e_{4}, e_{5}, e_{6}, e_{7}$). These $6 \times 24=144$ permutations leave equations (2.4), (2.6) and (2.8) unchanged.

3. The $\operatorname{osp}(1,2) 6 j$ coefficients

The finite-dimensional representations of the superalgebra $\operatorname{osp}(1,2)$ are labelled by a superspin j which takes integer or half-integer values $j=0, \frac{1}{2}, 1, \ldots$ (see Pais and Rittenberg 1975, Scheunert, Nahm and Rittenberg 1977, Hughes 1981 and Berezin and Tolstoy 1981). The representation j has dimension $4 j+1$. When narrowed to the su(2) algebra, it splits into two (or one for $j=0$) representations of $\operatorname{su}(2)$

$$
\begin{equation*}
j \rightarrow l=j \quad \text { and } \quad l=j-1 / 2 \quad \text { (if } j \neq 0) \tag{3.1}
\end{equation*}
$$

We also write this in the form $l=j-k / 2$ with $k=0$ or 1 . These representation spaces are graded, all states in $l=j$ have the same degree denoted by λ (λ can take the values 0 and 1) and all states $l=j-1 / 2$ have degree $1-\lambda$.

The coupling of two superspins j_{1} and j_{2} yields the values $j_{3}=\left|j_{1}-j_{2}\right|$, $\left|j_{1}-j_{2}\right|+1 / 2, \ldots, j_{1}+j_{2}$ of the resultant superspin. The degrees of the coupled states are determined by

$$
\begin{equation*}
\lambda_{3} \equiv \lambda_{1}+\lambda_{2}+2\left(j_{1}+j_{2}+j_{3}\right) \quad(\bmod 2) \tag{3.2}
\end{equation*}
$$

where λ_{i} specifies the degree in representation space $j_{i}(i=1,2,3)$.
We define the $\operatorname{osp}(1,2) 6 j$ coefficients by

$$
\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \tag{3.3}\\
j_{23} & j_{13} & j_{12}
\end{array}\right\}_{s}=\sum(-1)^{\phi} F_{0} F_{1} F_{2} F_{3}\left\{\begin{array}{lll}
l_{01} & l_{02} & l_{03} \\
l_{23} & l_{13} & l_{12}
\end{array}\right\}
$$

where

$$
\begin{align*}
& j_{m n}=l_{m n}+k_{m n} / 2 \quad\left(k_{m n}=0 \text { or } 1\right) \quad(0 \leqslant m<n \leqslant 3) \\
& \phi=|k|+k_{01} k_{23}+k_{02} k_{13}+k_{03} k_{12} \tag{3.4}\\
& |k|=k_{01}+k_{02}+k_{03}+k_{23}+k_{13}+k_{12}
\end{align*}
$$

The sum in equation (3.3) is over the $\mathrm{su}(2)$ spins $l_{m n}$ that correspond to the splitting (3.1) of the $\operatorname{osp}(1,2)$ spins $j_{m n}$. In equation (3.3), for each vertex i in figure 1 there appears a vertex factor F_{i} which depends on the $j_{m n}$ and $l_{m n}$ (with m or $n=i$) that meet at vertex i. In table 2 , we give the values of F_{0}, the other F_{i} being defined similarly.

Table 2. The vertex factors F_{0} and f_{0} at vertex 0 for the eight possible values of $k_{01}=2\left(j_{01}-i_{01}\right), k_{02}=\overline{2}\left(j_{02}-i_{02}\right)$ and $\dot{k}_{03}=\overline{2}\left(j_{03}-i_{03}\right)$. Notice that the various vertex factors F_{0} are obtained one from the other, but for a phase, by effecting for each change of $k_{0 i}$ the mirror transformation $l_{0 i} \rightarrow-l_{0 i}-1$.

k_{01}	k_{02}	k_{03}	F_{0}	f_{0}
0	0	0	$\left(l_{01}+l_{02}+l_{03}+1\right)^{1 / 2}$	1
0	0	1	$\left(l_{01}+l_{02}-l_{03}\right)^{1 / 2}$	L_{03}
0	1	0	$\left(l_{01}+l_{01}-l_{02}\right)^{1 / 2}$	L_{02}
0	1	1	$-\left(l_{02}+l_{03}-l_{01}+1\right)^{1 / 2}$	-1
1	0	0	$\left(l_{02}+l_{03}-l_{01}\right)^{1 / 2}$	L_{01}
1	0	1	$-\left(l_{01}+l_{01}-l_{02}+1\right)^{1 / 2}$	-1
1	1	0	$-\left(l_{01}+l_{02}-l_{03}+1\right)^{1 / 2}$	-1
1	1	1	$\left(l_{01}+l_{02}+l_{03}+2\right)^{1 / 2}$	$L_{01}+L_{02}+L_{03}+2$

Definition (3.3) is independent of the $\lambda_{m n}$ that specify the degrees in the spaces $j_{m n}$. It has been arrived at by removing the dependency on $\lambda_{m n}$ from the $\operatorname{osp}(1,2)$ $6 j$ coefficients defined by Minnaert and Mozrzymas (1992a). In the appendix, we give the Racah ($6 j$) coefficients defined by Zeng (1987a) and Minnaert and Mozrzymas (1992a) in terms of the $6 j$ coefficients (3.3).

As in equation (2.2), for the three coupled superspins at vertex $0, j_{01}, j_{02}$ and j_{13}, we define

$$
\begin{equation*}
W_{0}=j_{01}+j_{02}+j_{03} \quad J_{01}=W_{0}-2 j_{01} \quad J_{02}=W_{0}-2 j_{02} \quad J_{03}=W_{0}-2 j_{03} \tag{3.5}
\end{equation*}
$$

and analogous quantities $W_{m}, J_{m n}$ at the other three vertices $m=1,2,3$. The supertriangle condition (j_{01}, j_{02}, j_{13}) is now equivalent to the condition that the indices $J_{0 i}$ at vertex 0 are non-negative integers or half-integers.

When the superspins $j_{m n}$ in the $6 j$ take all possible values compatible with supertriangle conditions, $J=\left(J_{01}, J_{02}, \ldots, J_{32}\right)$ runs on a set E_{s} that contains the
set E of possible su(2) indices. As in section 2, we also use symbol J to represent the array of six spins $j_{m n}$, for example in $\{J\}_{s}$ to denote the value of a $6 j$ coefficient. The set E_{s}, also identified with the set of six spin arrays that satisfy the supertriangle conditions of the $6 j$, is closed under addition and under multiplication by a nonnegative integer. The $e_{i}(1 \leqslant i \leqslant 7)$ of table 1 are still extremal elements in E_{s}, but there are now 13 other extremal elements $g_{i}, \dot{g}_{i}(1 \leqslant i \leqslant 6)$ and g_{7}. The elements g_{3}, \bar{g}_{3} and g_{7} are given in table 3. The other g_{i}, \bar{g}_{i} differ from g_{3}, \bar{g}_{3} by exchanging spin $j_{\mathfrak{B}}$ (its values are 0 or 1) with another one (j_{01} for g_{1} and \bar{g}_{1}, \ldots).

Table 3. The extremal elements g_{3}, \bar{g}_{3} and g_{7}, defined as arrays $\left[\begin{array}{lll}j_{01} & j_{02} & j_{03} \\ j_{23} & j_{13} & j_{12}\end{array}\right]$ and in terms of the e_{i} (table 1). The other $g_{i}, \bar{g}_{i}(1 \leqslant i \leqslant 6)$ differ from g_{3}, \bar{g}_{3} by exchanging $\operatorname{spin} j_{03}$ (its values are 0 or 1) with another one (j_{01} for g_{1} and \dot{g}_{1}, \ldots).

$$
\begin{aligned}
& g_{3}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]=\frac{e_{3}+e_{4}+e_{7}}{2} \\
& \bar{g}_{3}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 1 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]=\frac{e_{1}+e_{2}+e_{5}+e_{6}}{2} \\
& g_{7}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]=\frac{e_{1}+e_{2}+e_{3}}{2}=\frac{e_{4}+e_{5}+e_{6}+e_{7}}{2}
\end{aligned}
$$

The $\operatorname{osp}(1,2)$ indices $J \in E_{s}$ can be classified in eight classes as follows (in other words the set E_{s} is the union of eight disjoint subsets $E_{i}(0 \leqslant i \leqslant 7)$): $E_{0}=E$ is the class of indices that are also su(2) indices; $E_{i}(1 \leqslant i \leqslant 6)$ is the class of indices of the form $g_{i}+u$ or $\bar{g}_{i}+u$ with $u \in E ; E_{7}$ is the class of indices of the form $g_{7}+u$ with $u \in E$. This classification is the same (in different order) as in Zeng (1987a) where the parities of $2 W_{m}(0 \leqslant m \leqslant 3)$ are used to characterize the different classes.

For the $\operatorname{osp}(1,2) 6 j$ coefficients, we define a normalization constant

$$
\begin{equation*}
M_{J}=\left(\prod_{i=0}^{3} \frac{\left\lfloor W_{i}+1 / 2\right\rfloor!}{\prod_{j \neq i}\left\lfloor J_{i j}\right\rfloor!}\right)^{1 / 2} \tag{3.6}
\end{equation*}
$$

where $\lfloor x\rfloor$ designates the greatest integer smaller than or equal to x. With this definition we rewrite equation (3.3) as

$$
\begin{equation*}
M_{J}\{J\}_{s}=\sum(-1)^{\phi} f_{0} f_{1} f_{2} f_{3} N_{L}\{L\} \tag{3.7}
\end{equation*}
$$

where the vertex factors f_{i} take now integer values (table 2 gives the vertex factor f_{0} for vertex 0). In order to obtain expressions for the $6 j$ coefficients it is convenient to consider the classes $E_{i}(0 \leqslant i \leqslant 7)$ separately. So, using similar notations as for equation (2.3), we define the generating function $\Psi_{i}(0 \leqslant i \leqslant 7)$ of the $\operatorname{osp}(1,2) 6 j$ coefficients with indices in E_{i} as the entire function of $t_{m n}^{1 / 2}$ given by

$$
\begin{equation*}
\Psi_{i}=\sum_{J \in E_{i}} M_{J}\{J\}_{s} t^{[J]}=\sum_{L \in E}\left(\sum_{K}(-1)^{\phi} f_{0} f_{1} f_{2} f_{3} t^{[K / 2]}\right) N_{L}\{L\} t^{[L]} \tag{3.8}
\end{equation*}
$$

where $K=2(J-L)$ are the indices that correspond to the array

$$
\left[\begin{array}{lll}
k_{01} & k_{02} & k_{03} \\
k_{23} & k_{13} & k_{12}
\end{array}\right] .
$$

The sum over K in equation (3.8) is limited to the values of this array with $k_{m n}=0$ or 1 and such that there exists $L \in E$ for which $L+K / 2 \in E_{i}$.

4. Calculation of $\{J\}_{s}$: case $J \in E$

When $J \in E$, the K in equation (3.8) takes the eight values such that $K / 2 \in E$. These are in fact $K=0$ and $K=2 e_{i}(1 \leqslant i \leqslant 7)$ (see table 1$)$. The factor $(-1)^{\phi} f_{0} f_{1} f_{2} f_{3} t^{[K / 2]}$ has value 1 for $K=0$ and z_{i} (see table 1) for $K=2 e_{i}$ ($1 \leqslant i \leqslant 7$). Using equations (2.3) and (2.5) we obtain

$$
\begin{equation*}
\Psi_{0}=\sum_{J \in E} M_{J}\{J\}_{s} t^{[J]}=\frac{1}{S} \tag{4.1}
\end{equation*}
$$

By expanding $1 / S$ in equation (4.1) we derive an expression similar to equation (2.6) for the value of the $6 j$

$$
\begin{equation*}
\{J\}_{s}=\frac{1}{M_{J}} \sum_{\alpha} \frac{(-1)^{|\alpha|}|\alpha|!}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!} \tag{4.2}
\end{equation*}
$$

where the summation is over the $\alpha \in \mathbb{N}^{7}$ such that $J=\sum_{i=1}^{7} \alpha_{i} e_{i}$.
Solving $J=\sum_{i=1}^{7} \alpha_{i} e_{i}$ for the $\alpha_{i}(1 \leqslant i \leqslant 7)$ in terms of $j_{m n}$ and $|\alpha|=x$

$$
\begin{array}{ll}
\alpha_{1}=j_{02}+j_{03}+j_{13}+j_{12}-x & \alpha_{5}=x-j_{01}-j_{13}-j_{12} \\
\alpha_{2}=j_{01}+j_{03}+j_{23}+j_{12}-x & \alpha_{6}=x-j_{23}-j_{02}-j_{12} \tag{4.3}\\
\alpha_{3}=j_{01}+j_{02}+j_{23}+j_{13}-x & \alpha_{7}=x-j_{23}-j_{13}-j_{03} \\
\alpha_{4}=x-j_{01}-j_{02}-j_{03} &
\end{array}
$$

shows explicitly that the summation in equation (4.2) is over integer x such that the $\alpha_{i}(1 \leqslant i \leqslant 7)$ are non-negative integers.

The value of the $6 j$ coefficient can also be written in terms of the chromatic polynomial (2.9) evaluated at $n=-1$

$$
\begin{equation*}
\{J\}_{s}=M_{J}^{-1} P(J,-1) \tag{4.4}
\end{equation*}
$$

From equation (4.2) we obtain that the $\operatorname{osp}(1,2)$ бj symbol $\{J\}_{s}$ for $J \in E$ presents the same 144 Regge symmetries as the su(2) $6 j$ symbol.

Finally, let us mention that equation (4.1), written in the form $\Psi_{0} S=1$, gives the summation formula

$$
\begin{equation*}
\sum_{J^{\prime}} M_{J^{\prime}}\left\{J^{\prime}\right\}_{s}=\delta_{J, 0} \tag{4.5}
\end{equation*}
$$

where J is fixed and where the summation is over the eight values $J^{\prime}=J, J^{\prime}=J-e_{i}$ ($1 \leqslant i \leqslant 7$). The delta function on the right has value 0 except for $J=0$ for which it takes the value 1 .

5. Calculation of $\{J\}_{s}$: case $J \in E_{3}$

All cases $E_{i}(1 \leqslant i \leqslant 6)$ are similar. We treat the case $J \in E_{3}$. The K in equation (3.8) takes eight values which are given in table 4 by the corresponding values of $k_{m n}$. The factor $(-1)^{\phi} f_{0} f_{1} f_{2} f_{3}$ now depends on the indices $L_{m n}$. So, for the first value of K in table 4, we have $(-1)^{\phi} f_{0} f_{1} f_{2} f_{3}=-L_{21} L_{12}$. Replacing the indices $L_{m n}$ by operators $\hat{L}_{m n}$, for instance

$$
\begin{equation*}
L_{12} \rightarrow \hat{L}_{12}=t_{12} \frac{\partial}{\partial t_{12}}=z_{3} \frac{\partial}{\partial z_{3}}+z_{6} \frac{\partial}{\partial z_{6}} \tag{5.1}
\end{equation*}
$$

we can carry out the summation over L in equation (3.8)

$$
\begin{equation*}
\Psi_{3}=\sum_{K} R_{K}\left(\sum_{L \in E} N_{L}\{L\} t^{[L]}\right)=\sum_{K} R_{K} \Phi \tag{5.2}
\end{equation*}
$$

where the operators R_{K} are detailed in table 4 and Φ is the generating function (2.3) of the $\operatorname{su}(2) 6 j$ coefficients. Applying the operators R_{K} to $\Phi=1 / S^{2}$, we can express Ψ_{3} in terms of the z_{i} as

$$
\begin{equation*}
\Psi_{3}=\sum_{J \in E_{3}} M_{J}\{J\}_{s} t^{[J]}=2 \frac{\left(z_{3} z_{4} z_{7}\right)^{1 / 2}-\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2}}{S^{3}} \tag{5.3}
\end{equation*}
$$

Relations (2.5) and $z_{1} z_{2} z_{3}=z_{4} z_{5} z_{6} z_{7}$ have been used to derive this equation.

Table 4. Calculation of equation (5.2). The K are given by their $k_{m n}$ values. The relation $\left(z_{3} z_{4} z_{7}\right)^{1 / 2}=\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2} z_{3} /\left(z_{5} z_{6}\right)$ is useful when applying the operator R_{K} to Φ.

k_{01}	k_{02}	k_{03}	k_{23}	k_{13}	k_{12}	R_{K}
0	0	0	0	0	1	$-\left(z_{3} z_{4} z_{7}\right)^{1 / 2} \frac{1}{z_{3}} \hat{L}_{21} L_{12}$
0	1	1	0	1	0	$\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2} \frac{1}{z_{2}} L_{20} \hat{L}_{13}$
1	0	1	1	0	0	$\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2} \frac{1}{z_{1}} \hat{L}_{10} \hat{L}_{23}$
1	1	0	1	1	1	$-\left(z_{3} z_{4} z_{7}\right)^{1 / 2}\left(\hat{L}_{10}+\hat{L}_{12}+\hat{L}_{13}+2\right)\left(\hat{L}_{20}+\hat{L}_{21}+\hat{L}_{23}+2\right)$
0	0	0	1	1	0	$-\left(z_{3} z_{4} z_{7}\right)^{1 / 2} \frac{1}{z_{7}} \hat{L}_{13} \hat{L}_{23}$
0	1	1	1	0	1	$-\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2} \frac{1}{z_{6}} \hat{L}_{12}\left(\hat{L}_{20}+\hat{L}_{21}+\hat{L}_{23}+2\right)$
1	0	1	0	1	1	$-\left(z_{1} z_{2} z_{5} z_{6}\right)^{1 / 2} \frac{1}{z_{z}} \hat{L}_{21}\left(\hat{L}_{10}+\hat{L}_{12}+\hat{L}_{13}+2\right)$
1	1	0	0	0	0	$-\left(z_{3} z_{4} z_{7}\right)^{1 / 2} \frac{1}{z_{4}} \hat{L}_{10} \hat{L}_{20}$

We obtain a formula for the $6 j$ coefficient $\{J\}_{s}\left(J \in E_{3}\right)$ by expanding S^{-3} in equation (5.3). The coefficient $\{J\}_{s}$ is expressed as a sum over the decompositions of J in the forms

$$
\begin{equation*}
J=g_{3}+\sum_{i=1}^{7} \alpha_{i} e_{i} \quad \text { and } \quad J=\bar{g}_{3}+\sum_{i=1}^{7} \bar{\alpha}_{i} e_{i} \tag{5.4}
\end{equation*}
$$

where $\alpha, \bar{\alpha} \in \mathbb{N}^{7}$

$$
\begin{equation*}
\{J\}_{s}=\frac{1}{M_{J}}\left(\sum_{\alpha} \frac{(-1)^{|\alpha|}(|\alpha|+2)!}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!}-\sum_{\dot{\alpha}} \frac{(-1)^{|\dot{\alpha}|}(|\bar{\alpha}|+2)!}{\bar{\alpha}_{1}!\bar{\alpha}_{2}!\bar{\alpha}_{3}!\bar{\alpha}_{4}!\bar{\alpha}_{5}!\bar{\alpha}_{6}!\bar{\alpha}_{7}!}\right) \tag{5.5}
\end{equation*}
$$

This gives an expression in terms of 2 chromatic polynomials evaluated at $n=-3$

$$
\begin{equation*}
\{J\}_{s}=2 M_{J}^{-1}\left(P\left(J-g_{3},-3\right)-P\left(J-\bar{g}_{3},-3\right)\right) \tag{5.6}
\end{equation*}
$$

We can recast equation (5.5) as a sum over the decompositions of J in the form

$$
\begin{equation*}
J=\sum_{i=1}^{7} \beta_{i} \frac{e_{i}}{2} \tag{5.7}
\end{equation*}
$$

where $\beta \in \mathbb{N}^{7}$

$$
\begin{equation*}
\{J\}_{s}=\frac{1}{M_{J}} \sum_{\beta} \frac{(-1)^{\lfloor(|\beta|+1) / 2\rfloor+|\beta|+1}\lfloor(|\beta|+1) / 2\rfloor!}{\left[\beta_{1} / 2\right\rfloor!\left\lfloor\beta_{2} / 2\right\rfloor!\left\lfloor\beta_{3} / 2\right\rfloor!\left\lfloor\beta_{4} / 2\right\rfloor!\left\lfloor\beta_{5} / 2\right\rfloor!\left\lfloor\beta_{6} / 2\right\rfloor!\left\lfloor\beta_{7} / 2\right\rfloor!} \tag{5.8}
\end{equation*}
$$

The decompositions (5.4) correspond to the values $\beta=2 \alpha+(0,0,1,1,0,0,1)$ and $\beta=2 \bar{\alpha}+(1,1,0,0,1,1,0)$ in decomposition (5.7).

Although equation (5.8) is quite similar to equation (2.6), we do not obtain all 144 Regge symmetries. Indeed, when we permute extremal elements within (e_{1}, e_{2}, e_{3}) and ($e_{4}, e_{5}, e_{6}, e_{7}$), for given β, it can happen that the sum in equation (5.7) is no more in E_{s} (giving $j_{01}=\frac{1}{4}$ for example). The permutations that leave J in E_{s} can be obtained by combining the $2 \times 2 \times 2$ permutations that leave the three pairs $\left(e_{1}, e_{2}\right),\left(e_{4}, e_{7}\right)$ and (e_{5}, e_{6}) unchanged (so that g_{3} and \bar{g}_{3} also remain unchanged) with six permutations that change g_{3} into $g_{i}(1 \leqslant i \leqslant 6)$. So, there are in fact $8 \times 6=48$ symmetries. They include of course the 24 permutations of the vertices of the tetrahedron in figure 1 . One example of the remaining symmetries is given by the exchange $e_{1} \leftrightarrow e_{2}$

$$
\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \tag{5.9}\\
j_{23} & j_{13} & j_{12}
\end{array}\right\}_{s}=\left\{\begin{array}{lll}
c-j_{23} & c-j_{13} & j_{03} \\
c-j_{01} & c-j_{02} & j_{12}
\end{array}\right\}_{s} \quad c=\frac{j_{01}+j_{02}+j_{13}+j_{23}}{2} .
$$

Noting that for

$$
J=\left[\begin{array}{lll}
j_{01} & j_{02} & j_{03} \\
j_{23} & j_{13} & j_{12}
\end{array}\right] \in E_{3}
$$

we have

$$
J_{0}=J-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 / 2
\end{array}\right] \in E
$$

we may wonder whether $\{J\}_{s}$ can be expressed in terms of the chromatic polynomial $P\left(J_{0}, n\right)$. That this can be done we show as follows. Writing equation (5.3) as

$$
\begin{equation*}
\Psi_{3}=2\left(\frac{z_{4} z_{7}}{z_{3}}\right)^{1 / 2} \frac{z_{3}-z_{5} z_{6}}{S^{3}} \tag{5.10}
\end{equation*}
$$

we get be expanding S^{-3}

$$
\begin{equation*}
\{J\}_{s}=\frac{1}{M_{J}} \sum_{\alpha} \frac{(-1)^{|\alpha|}|\alpha|!w(\alpha)}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!} \tag{5.11}
\end{equation*}
$$

where $w(\alpha)=-(|\alpha|+1) \alpha_{3}-\alpha_{5} \alpha_{6}$ and where the sum is over the decompositions of J_{0} in the form

$$
\begin{equation*}
J_{0}=\sum_{i=1}^{7} \alpha_{i} e_{i} \tag{5.12}
\end{equation*}
$$

By solving equation (5.12) for α in terms of J and $|\alpha|$, in a similar way as in equation (4.3), we can rewrite $w(\alpha)$ in the form

$$
\begin{equation*}
w(\alpha)=2 j_{12}(|\alpha|+1)-A_{J} \tag{5.13}
\end{equation*}
$$

where
$A_{J}=\left(W_{2}+1 / 2\right)\left(W_{1}+1 / 2\right)=\left(j_{02}+j_{23}+j_{12}+1 / 2\right)\left(j_{01}+j_{13}+j_{12}+1 / 2\right)$.

Substituting equation (5.13) in equation (5.11), we arrive at an expression in terms of the chromatic polynomial

$$
\begin{equation*}
\{J\}_{s}=M_{J}^{-1}\left(2 j_{12} P\left(J_{0},-2\right)-A_{J} P\left(J_{0},-1\right)\right) \tag{5.15}
\end{equation*}
$$

6. Calculation of $\{J\}_{s}$: case $J \in E_{7}$

We evaluate equation (3.8) when $J \in E_{7}$ in the same way as in the preceding section. K runs on a set of eight values as before, but now the factors $(-1)^{\phi} f_{0} f_{1} f_{2} f_{3}$ are of degree 4 in the $L_{m n}$. The generating function Ψ_{7} can be arranged as

$$
\begin{gather*}
\Psi_{7}=6 \frac{\left(z_{1} z_{2} z_{3}\right)^{1 / 2}}{S^{5}}\left(1+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-2\left(z_{1}+z_{2}+z_{3}+z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}\right)\right. \\
\quad-\left(z_{4}^{2}+z_{5}^{2}+z_{6}^{2}+z_{7}^{2}\right) \\
\left.+2\left(z_{4} z_{5}+z_{4} z_{6}+z_{4} z_{7}+z_{5} z_{6}+z_{5} z_{7}+z_{6} z_{7}\right)\right) \tag{6.1}
\end{gather*}
$$

which is a symmetric function in $\left(z_{1}, z_{2}, z_{3}\right)$ and $\left(z_{4}, z_{5}, z_{6}, z_{7}\right)$. It can be remarked that, rather mysteriously, the large polynomial in equation (6.1) looks like the expansion of S^{2}, except that some signs have changed and that some cross products have vanished.

By expanding S^{-5} in equation (6.1) we obtain a formula for the $6 j$ coefficient $\{J\}_{s}\left(J \in E_{7}\right)$ as a sum over the decompositions of J in the form

$$
\begin{equation*}
J=g_{7}+\sum_{i=1}^{7} \alpha_{i} e_{i} \tag{6.2}
\end{equation*}
$$

where $\alpha \in \mathbb{N}^{7}$

$$
\begin{equation*}
\{J\}_{s}=M_{J}^{-1} \sum_{\alpha} \frac{(-1)^{|\alpha|} \mid(|\alpha|+2)!w(\alpha)}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!\alpha_{7}!} . \tag{6.3}
\end{equation*}
$$

The factor $w(\alpha)$ which is symmetric in the permutations of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and (α_{4}, $\alpha_{5}, \alpha_{6}, \alpha_{7}$) is given by

$$
\begin{gather*}
w(\alpha)=3\left(1+\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+2\left(\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}\right) \\
+\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\sum_{1 \leqslant i<j \leqslant 7} \alpha_{i} \alpha_{j} . \tag{6.4}
\end{gather*}
$$

We can express equation (6.3) in terms of the chromatic polynomial $P\left(J-g_{7}, n\right)$ in the same way as at the end of section 5 . By solving equation (6.2) for α in terms of J and $|\alpha|$, we rewrite $w(\alpha)$ in the form

$$
\begin{equation*}
w(\alpha)=-6 \frac{|\alpha|+3}{3!}+\frac{A_{J}}{2} \tag{6.5}
\end{equation*}
$$

where, for J fixed, A_{J} does not depend on any peculiar decomposition (6.2). Putting

$$
\begin{align*}
& \sigma=j_{01}+j_{02}+j_{13}+j_{23}+j_{13}+j_{12} \tag{6.6}\\
& \tau=j_{01} j_{23}+j_{02} j_{13}+j_{03} j_{12}
\end{align*}
$$

we have

$$
\begin{equation*}
A_{J}=4 \tau+2 \sigma+3 . \tag{6.7}
\end{equation*}
$$

Substituting equation (6.5) in equation (6.3), we see that for $J \in E_{7}$ the $6 j$ coefficient $\{J\}_{s}$ can be expressed in terms of the chromatic polynomial as

$$
\begin{equation*}
\{J\}_{s}=M_{J}^{-1}\left(-6 P\left(J-g_{7},-4\right)+A_{J} P\left(J-g_{7},-3\right)\right) . \tag{6.8}
\end{equation*}
$$

From equation (6.3) we easily obtain that the $\operatorname{osp}(1,2) 6 j$ symbol $\{J\}_{s}$ for $J \in E_{7}$ possesses the same 144 Regge symmetries as the su(2) $6 j$ symbol.

7. Conclusion

In conclusion, let us point out a subject where the explicit formulae obtained in this work might be useful. The subject is the study of non-trivial zeros of the $6 j$ by means of Diophantine equations based on explicit formulae, as was done in the case of su(2) $6 j$ coefficients (see for example Beyer, Louck and Stein 1986, Labarthe 1987 and Srinivasa Rao and Chiu 1989). Examples of zeros for $J \in E_{3}$ are given by

$$
\{J\}_{s}=\left\{\begin{array}{ccc}
a & j & j \tag{7,1}\\
j & b & a+b-1 / 2
\end{array}\right\}_{s}=0
$$

and

$$
\left\{\begin{array}{ccc}
(a+b) / 2 & j-(b-a) / 2 & j \tag{7.2}\\
j+(b-a) / 2 & (a+b) / 2 & a+b-1 / 2
\end{array}\right\}_{s}=0
$$

where a and b are integers and j is integer or half-integer. These two $6 j$ are related by Regge symmetry (5.9). The vanishing of these coefficients follows from equation (5.6) and $P\left(J-g_{3},-3\right)=P\left(J-\bar{g}_{3},-3\right)$ that is readily verified since there is only one term in the summation of both chromatic polynomials. The vanishing of

$$
\left\{\begin{array}{ccc}
1 & j & j \\
j & 1 & 3 / 2
\end{array}\right\}
$$

(corresponding to $a=b=1$) for any j has been established by Minnaert and Mozrzymas (1992b) by considering a chain of superalgebras.

Appendix

The osp(1,2) $6 j$ coefficients defined by Minnaert and Mozrzymas (1992a) are related to the $6 j$ coefficients (3.3) by

$$
\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \tag{A.1}\\
j_{23} & j_{13} & j_{12}
\end{array}\right\}^{S R}=(-1)^{\theta}\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \\
j_{23} & j_{13} & j_{12}
\end{array}\right\}_{s}
$$

with
$\theta \equiv 2 W_{1} \lambda_{23}+2 W_{2} \lambda_{13}+2 W_{3} \lambda_{12} \equiv \lambda_{01} \lambda_{23}+\lambda_{02} \lambda_{13}+\lambda_{03} \lambda_{12}(\bmod 2)$
where W_{m} is defined as in equation (3.5). Equation (A.1) follows from equation (39) of Minnaert and Mozrzymas (1992a) by summing over all M and using their equations (24), (38) and (A13). The equivalence of the two forms of θ given in equation (A.2) results from relations like equation (3.2) which occurs for each coupling in the $6 j$.

The Racah coefficients defined by Zeng (1987a) in his equations (4.9-4.16) are related to the $6 j$ coefficients (3.3) by

$$
R\left(j_{01}, j_{02}, j_{13}, j_{23} ; j_{03}, j_{12}\right)=(-1)^{\psi}\left\{\begin{array}{lll}
j_{01} & j_{02} & j_{03} \tag{A.3}\\
j_{23} & j_{13} & j_{12}
\end{array}\right\}_{s}
$$

where

$$
\begin{equation*}
\psi=\left\lfloor j_{01}+j_{02}+j_{13}+j_{23}\right\rfloor+4 W_{2} W_{3}+2 W_{1}\left(1+\lambda_{02}\right)+2 W_{0} \lambda_{02} \tag{A.4}
\end{equation*}
$$

References

Bargmann V 1962 Rev. Mod. Phys. 34 829-45
Berezin F A and Tolstoy V N 1981 Commun. Math. Phys. 78 409-28
Beyer W A, Louck J D and Stein P R 1986 Acta Applicandae Mathematicae 7 257-311
Biedenharn L C and Louck J D 1981 The Racah-Wigner algebra in quantum theory Encyclopedia of Mathematics and its Applications vol 9 (Reading MA: Addison-Wesley)
Biedenharn L C and Van Dam H 1965 Quantum Theory of Angular Momentum (New York: Academic)
Hughes J W B 1981 J. Math. Phys. 22 245-50
Jucys A P and Bandzaitis A A 1965 Teoriia Momenta Kolichesttva Dvizheniia v Kvantovoi Mekhanike (Mintis)
Kauffman L H 1991 Knots and Physics (Singapore: World Scientific)
Labarthe J J 1975 J. Phys. A: Math. Gen. 8 1543-61
Labarthe J J 1986 J. Math. Phys. 27 2964-5
Labarthe J J 1987 J. Math. Phys. 28 2909-13
Minnaert P and Mozrzymas M 1992a J. Math. Phys. 33 1582-93

- 1992b J. Math. Phys. 33 1594-600

Moussouris J P 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 308-12, 313-17
Pais A and Rittenberg V 1975 J. Math. Phys. 16 2062-73
Penrose R 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 301-7
Regge T 1959 Nuovo Cimento 11 116-7
Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18 146-54, 155-62
Srinivasa Rao K and Chiu C B 1989 J. Phys. A: Math. Gen. 22 3779-88
Zeng G J 1987a J. Phys. A: Math Gen. 20 1961-71

- 1987b J. Phys. A: Math. Gen. 20 5425-33

Zeng G J and Yuan X H 1988 J. Math. Phys. 29 2553-62

