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Racah-type expressions for the 6/ coeflicients of the
orthosymplectic superalgebra osp(1,2)

J J Labarthe
Laboratoire Aimé Cotton, Université de Paris XI, F91405 Orsay Cedex, France

Received 13 July 1992

Abstract. Using generating fitnctions, various explicit expressions for the 65 coefficients of
the osp{1,2) superalgebra arc derived. Some of these expressions bear a close resemblance
to the Racah formula for the su(2) 6; coefficients. As a consequence it is shown that
the osp(1,2) 67 coefficients exhibit Regge symmetries.

1. Introduction

In this work we establish formulae for the 65 coefficients of the osp(1,2) superalgebra,
sometimes denoted by B(0,1). The finite-dimensional representations of this
superalgebra are labelled by a superspin which reminds us of the su(2) spin
label. In fact, several authors have developed the Racah-Wigner calculus for the
osp(1,2) superalgebra, showing that many properties of the su(2) Racah-Wigner
calculus (Clebsch—-Gordan coefficients, 35 and 65 symbols, tensor operators, Wigner-
Eckart theorem, Wigner and Racah operators, Biedenharn—Elliott identity,...)
have their counterparts in the osp(1,2) superalgebra (Scheunert e al 1977,
Berezin and Tolstoy 1981, Zeng 1987a, b, Zeng and Yuan 1988, Minnaert and
Mozrzymas 1992a, b).

2 b3 3

Figure 1. Jucys graph of the 6; coefficient.

By coupling and recoupling three superspins, Zeng (1987a) defined Racah (65)
coefficients that are invariant but for a possible change of sign in the 4! = 24
permutations of the vertices of the tetrahedron (figure 1) representing the coefficients.
Minnaert and Mozrzymas (1992a) defined more symmetrical 65 coellicients which
remain completely invariant in these 24 permutations. In this paper we study these
latter coefficients, slightly modified by multiplication by an invariant phase factor.
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In section 2, we recall the generating function of su(2) 6; coefficients. In section
3, we start from an expression of the 0sp(1,2) 65 coefficients as a sum of eight su(2) 6;
coeflicients and define generating functions, distinguishing eight classes of coefficients.
In sections 4-6, for these various classes, the generating functions are calculated and
expressions for the coefficients are derived. Some of these expressions bear a close
resemblance to the Racah formula for the su(2) 65 coefficients, from which it follows
that the osp(1,2) 6; coefficients present not only the 24 symmetries of the regular
tetrahedron but also additional Regge-type symmetrics. We also give expressions
in terms of the chromatic polynomial, which can be viewed as a terminating , F,
hypergeometric series.

2. The su(2) 6; coefficients

We define a number of notations, most of which are adapted from Bargmann (1962),
(see also Biedenharn and Van Dam (1965, p 300-16)) and from Labarthe (1975).
The su(2) 65 coefficient

{ l!l}] lU2 ltB } (2 1)

l23 113 llZ

is represented in figure 1 by its Jucys graph (see Jucys and Bandzaitis 1965). For
vertex 0, where the three spins I, {;, and [;; meet, we define

Vo= ln + o+ Ly =V, -2y Ly =W -2, Lg = Wy —2y;.
2.2)

We call Ly, Ly and L, the indices of vertex 0. The triangle condition (I, {p, ly)
is equivalent to the condition: Ly; € N (1 € ¢ < 3) where N is the set of non-negative
integers.

Similarly to equation (2.2), V; and the indices L;; (i, = 0, |, 2, 3; i # j)
are defined for the 4 triangle conditions of the 65. We put together the indices as
L =(Lgy, L, ..., Ly). When the spins [;; in array (2.1) take all possible values
compatible with triangle conditions, L runs on a subset E of N2 (the indices are not
independent: there are six relations like Ly, + Ly, = La + Ly = 2{5). We also
denote by E the set of the corresponding arrays of six spins

I tp 1
L= [ 0 ez 03]
Iy Iy lp

(using the same symbols E and L). With this convention, {L} denotes the value of
the 67 coefficient (2.1).

We make the following definitions (see Labarthe 1986). The operations L + L
and oL for L,I' € FE and u € N are the usual matrix operations. It is easily seen
that L 4+ L' € E and uL € E (that is E is closed under these operations). An
element L € E is called extremal if it cannot be decomposed as a sum L = L'+ L”
of non-zero elements L', L” € FE. There are 7 extremal elements, denoted by e,
(1 € i € 7), which are defined in table 1.
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Table 1. The extremal elements e; = [:01 :02 :";] and the associated monomials
s la h

7 = tleid (1€ i€ 7). Note the useful relation zyzp2z3 = 24252427 (see equation (2.8)).

[0 1 1

e = 1 1] 21 = tntotnts
0 5 3
U %

€= f 1] 22 = tptwinty
[3 0 3
-1 1

_lz 20 _

e3= |, ] = tptntetn
7 7 0
[0 0 0]

ea=(; ; z4 = tpitmtyp
Lz 2z 2.
o 11

1z

es= [y 0 0 z5 =ttty
L 2 J
-1 ‘l-
1 g 1
z z

s = 5y =ttty
[0 7 O]
SHREPS
2 1

e = 1 27 =ttt
L0 0 7 ]

The generating function & of the 65 is an entire function of ¢ = (Zy, tp, ...,
t3;) given by

z 1
LeE

where N, is the normalization constant

N — (ﬁ(V.-+1)!)m 28
o g § PR 2T '

and where #1Z] = (Loglow | ¢5s The generating function @ is expressed in terms
of

S=1+21+22+Z3+24+25+26+27 (2.5)

where the z; are given in table 1.
The expansion of 1/57 in equation (2.3) gives the value of the 6

-] (=Dl + D!
{£}= “1\7;; o laylaglagloglaglas!

(2.6)

where |a| = a; + a; + -+ + o, and where the summation is over the a = (o, aq,
..., @y} € N7 such that

L:Zaiei. 2.7
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Since the extremal elements e; are linked by
Gitextez=etestete (2.8)

the sum in equation (2.6) can be written in terms of a summation on one integer
thus recovering Racah’s formula for the 6;.

Let us recall the interpretation of equation (2.6) in the chromatic method
of evaluating Penrose spin networks (see Penrose 1979, Moussouris 1979 and
Kauffman 1991). For each decomposition of L in |a| extremal elements (2.7), we
assign to the extremal elements || different colours taken from a set of n colours (n

is supposed large enough). The number of ways of decomposing L in these coloured
extremal elements is

P(L,n):Zn(n—l)(n_la|+1) (2‘9)

aploglagtoglagtog o)

where the summation is over the a such that equation (2.7) holds. We call P(L,n)
the chromatic polynomial: for given L, it is defined for any » by equation (2.9) as
a polynomial in n that takes integer values when n is a positive or negative integer.
The 65 coeflicient (2.6) and the chromatic polynomial can be written in terms of
43 hypergeometric functions with unit argument (see Biedenharn and Louck (1981,
p 429)). Evaluating the chromatic polynomial at n = —2, which corresponds to the
‘number of colours’ of spin networks, permits to write equation (2.6) as

{L} = N['P(L,-2). (2.10)

The symmetries of the 65 (including the Regge (1959) symmetries) are easily
obtained from equation (2.6). They correspond to permutations of extremal elements
within (e;, e,, e3) and (ey, €5, €4, e;). These 6 x 24 = 144 permutations leave
cquations (2.4}, (2.6) and (2.8) unchanged.

3. The osp(1,2) 65 coefficients

The finite-dimensional representations of the supera[gebra osp(l 2) are labelled by a
superspin j which takes integer or half-integer values j = 0, 1, 1, ... (see Pais and
Rittenberg 1975, Scheunert, Nahm and Rittenberg 1977, Hughes 1981 and Berezin
and Toistoy 1981). The representation j has dimension 4j 4+ 1. When narrowed to
the su(2) algebra, it splits into two (or one for j = 0) representations of su(2)

j=l=3 and l=j-1/2  (if § #0). 3.1)

We also write this in the form ! = j — k/2 with k = 0 or 1. These representation
spaces are graded, all states in I = j have the same degree denoted by A (A can take
the values 0 and 1) and all states I = j — 1/2 have degree 1 — A

The coupling of two superspms J1 and j, yields the values j, = |3, — le
|73 — 32) + 1/2, ..., j; + 4, of the resultant supcrspin. The degrees of the coupled
states are determined by

A=A+ A +2(5 +5, +73) (mod 2} (3.2)
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where A; specifies the degree in representation space j; (i = 1, 2, 3).
We define the osp(1,2) 67 coefficients by

Jn Joz J by lp !
{ - Jn Jae }’ = Z(_l)d) F\F\F,F, { 0l luz 03 } (3.3)

in I Ju Iy Il Ip
where
Fmn = bn + Ko /2 (K = 0o0r 1) (0gm< ng3)
¢ = |kl + ky kg + kppkoys + kgzkya (3-4)
el = Ry + kgy + ks + kg + kyz + kyp-

The sum in equation (3.3) is over the su(2) spins {, . that correspond to the splitting
(3.1) of the osp(1,2) spins j,,,. In equation (3.3), for each vertex ¢ in figure 1 there
appears a vertex factor F; which depends on the j . and { . (with m or n = %)
that meet at vertex i. In table 2, we give the values of F;, the other F, being defined
similarly.

Table 2. The vertex factors Fp and fp at vertex 0 for the eight possible values of
kor = 2(jor ~ im), ko2 = Z(Jor — i) and koa = 2(jo3 — ige). Notice that the various
vertex factors Fy are obtained one from the other, but for a phase, by effecting for each
change of kg; the mirror transformation Iy — —ly; — 1.

kn ko ke Fo fo

] 0 0 U+l +ig + D)V 1

0 0 1 (log + I — lgg) /2 Los

0 1 0 (I +ln— le)/? Lo

0 1 I —(e+lg-lo+ 1)V -1

i 0 0 (g + o — lo) /2 Lot

1 0 1 —(g+ln—lg+ 1Y% -1

1 1 0 —(lg+lp—lg+ 1)1 —1

1 1 1 (Im +lm+lo3+2)llz Lop+ Lop+ Loz +2

Definition (3.3) is independent of the A . that specify the degrees in the spaces
Jmn- It has been arrived at by removing the dependency on A, .. from the osp(1,2)
6; coefficients defined by Minnaert and Mozrzymas (1992a). In the appendix, we give
the Racah (6;5) coefficients defined by Zeng (1987a) and Minnaert and Mozrzymas
(1992a) in terms of the 65 coefficients (3.3).

As in equation (2.2), for the three coupled superspins at vertex 0, jy, jy, and jg,
we define

Wy = in+Jin+is Jo = Wy=2jy Jp = Wy—25 Juz = Wi~25p3
(3.5)

and analogous quantities W, J_ . at the other three vertices m = 1, 2, 3. The
supertriangle condition (Jy;, jup» Jjm) IS now equivalent to the condition that the
indices J; at vertex 0 are non-negative integers or half-integers.

When the superspins j,,, in the 6§ take all possible values compatible with
supertriangle conditions, J = {Jy, Jyz, ..., J3») runs on a set E_ that contains the
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set E of possible su(2) indices. As in section 2, we also use symbol J to represent the
array of six spins j_, ., for example in {J}, to denote the value of a 65 coefficient.
The set E,, also identified with the set of six spin arrays that satisfy the supertriangle
conditions of the 65, is closed under addition and under multiplication by a non-
negative integer. The e; (1 € 7 £ 7) of table 1 are still extremal elements in E,, but
there are now 13 other extremal elements g;, §; (1 € ¢ < 6) and g,. The elements
g3, 9 and g, are given in table 3. The other g,, §; differ from g, §; by exchanging
Spin jy (its values are 0 or 1) with another one (jy; for g, and §;,...).

Table 3. The extremnal elements g3, 73 and g7, defined as arrays [Jm Joz J{’:’] and in

n Jji Ji2
terms of the e; (table 1). The other g;, §; (1 £ i § 6) differ from g3, §3 by exchanging
spin jo3 (its values are 0 or 1) with another one (Jo; for gy and §y, ...).

ri 1 -
_1T 7 9] eateste
#BEVL oL T 2
Ltz Iz 2
rL 1 1
1t | _ertertestes
B=1 o1 | T 2
Lz 7 2
ri 1 19
_|z z 7| _e1terter  estestester
=1 | T 2 - 2
L2 2 2.

The osp(l,2) indices J € E, can be classified in eight classes as follows (in other
words the set £, is the union of eight disjoint subsets E;, 0 < i< 7)) E,j= E is
the class of indices that are also su(2) indices; E; (1 < ¢ £ 6) is the class of indices
of the form g; 4+ u or g; + u with u € E; E, is the class of indices of the form g,+ u
with 4 € E. This classification is the same (in different ordet) as in Zeng (1987a)
where the parities of 2W,, (0 < m < 3) are used to characterize the different classes.

For the osp(1,2) 6; coefficients, we define a normalization constant

3 12
W, +1/2]!
M, = =1 o 3.6

! (H Hj¢;LJ;jJ!) )

where |x] designates the greatest integer smaller than or equal to x. With this
definition we rewrite equation (3.3) as

M, {JY, = (-D? fufi f fsN{L) 3.7

where the vertex factors f; take now integer values (table 2 gives the vertex factor f;
for vertex 0). In order to obtain expressions for the 6; coeflicients it is convenient
to consider the classes E; (0 € ¢ < 7) separately. So, using similar notations as for
equation (2.3), we define the generating function W; (0 < ¢ < 7) of the osp(1,2) 65
coefficients with indices in E; as the entire function of ti42 given by

U= 3 M0}, = % (Z(-l)"fuf,fzfa t“"zl) N {L}i#] (3.8)

JekE, LEE \ K
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where IC = 2(J — L) are the indices that correspond to the array
[km ky, kus] .
kp ki

The sum over K in equation (3.8} is limited to the values of this array with k&, =0
or 1 and such that there exists L € E for which L 4+ K/2 € E,.

4, Calculation of {J}: case J ¢ E

When J € E, the K in equation (3.8) takes the eight values such that (/2 € E.
These are in fact ' = O and K = 2e; {1 € ¢ € 7) (see table 1). The factor
(- 1)«?5 fofifof3 1577 has value 1 for K = 0 and z; (see table 1) for K = 2e,
(1 € ¢ € 7). Using equations (2.3) and (2. S) we obtain

Ty= > M,;{J},d] = % @.1)

JeE

By expanding 1/5 in equation (4.1} we derive an expression similar to equation (2.6)
for the value of the 6j

ROI
= o3 — =V lal 42)

01!a2!a3!a4!05!aﬁ!a7!

where the summation is over the o € N7 such that J = ELI e,
Solving J = Y1, a;e; for the o; (1 << 7)in terms of j,. and |a| ==

oy =ijptigtintin—¢2 a5 == Jy — Ji3~ I
o =Jutistintin—= Qg =2 —Ju—Jg—Ji2 @3)
oy =Jntintintin—=2 =T~ Fn=ji— JIn

a, = —Jg —Jp— I

s exphcltly that the summation in equation (4.2 s over integer x such tha
a; (1 < i £ 7) are non-negative integers.

The value of the 67 coefficient can also be written in terms of the chromatic

polynomial (2.9) evaluated at n = -1

{J}, = M7'P(J,-1). d.4)

o
e

—*

4~

From equation (4.2) we obtain that the osp{i,2) 65 symboi {J}, for J € E
presents the same 144 Regge symmetries as the su(2) 65 symbol.

Finally, let us mention that equation (4.1}, written in the form ¥,5 = 1, gives
the summation formula

Z My{J'y, =6, (4.5)
JI

where J is fixed and where the summation is over the eight values J' = J, J' = J—¢;
(1 £ 7 £ 7). The delta function on the right has value 0 except for J =0 for Wthh
it takes the value 1.
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5. Calculation of {J},: case J € E,

All cases E; (1 £ ¢ < 6) are similar. We treat the case J € E;, The K in equation
(3.8) takes eight values which are given in table 4 by the corresponding values of
k,... The factor (—1)? f, f, f,fs now depends on the indices L,,,. So, for the first
value of K in table 4, we have (—1)® f,f,f;f; = —L; L,;. Replacing the indices
L., by operators L for instance

mn?

(7] a 7]

L L =ty = 2p e —
1 L T 33234‘%326

(5.1)

we can carry out the summation over L in equation (3.8)

Uy=) Ry (Z NL{L}t[L]) =Y Ri® (5.2)
K K

LeE

where the operators R, are detailed in table 4 and ¢ is the generating function
(2.3) of the su(2) 6; coefficients. Applying the operators R, w0 ® = 1/5%, we can
express ¥, in terms of the z; as

232,202 — (225252517
‘I’3= Z MJ{J}st[J] =2( 34 7) 53 1-245<H . (53)
JEE;

Relations (2.5) and z,2,2; = 2425242, have been used to derive this equation.

Table 4. Calculation of equation (5.2). The K are given by their kmyp values. The
relation (z3zaz7)? = (z1222526}% 23/ (5534) is useful when applying the operator

Rg to ¢,
kn ke ke kn kp kp Ry
0 0 0 0 U 1 -(2324z-,-)1/2:%f421£12
o 1t 1 o0 1 o0 (zlzzzszé)lﬂzlzﬁmﬂn
1 0 1 1L 0 o (zlzzzszﬁ)lﬂzllﬁmﬂu
1 1 0 1 1 1 (232422 ( Ly + Lo+ Lys+ 2)(Lag + Loy + En +2)
6 o o 1 1 © —(z;zu-,r)llzz%ﬁgflu
o I 1 1 0 1 —(21:22525)112313L12(f4m+ Loy +Lim+2)
i 0 1 0 i 1 —(znzzzszﬂ)lfl;-]?flzl(ﬁlo-f'le+£13+2)
1t 1 0 0o o o0 '(z3z4z-,)‘!,zzl4£101120

We obtain a formula for the 65 coefficient {J}, (J € E,) by expanding S~ in
equation (5.3). The coefficient {J}, is expressed as a sum over the decompositions
of J in the forms

7
J = as + 2 «e; and J = g3 + Z diei (54)
i=1
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where o, & € N7

—Dlel(|o ! —1sl(1a] + 2!
{J}FL(Z CO(al+2) g~ (DGal+ 2! ) )

MJ = 0!1!02!013!04!05!056!07! a d]!&:!&3!&4!d5!dﬁ!&7!
This gives an expression in terms of 2 chromatic polynomials evaluated at n = —3
{JY, =2M71(P(J ~ g;,-3) — P(J - §5.-3)). (5.6)

We can recast equation (5.5) as a sum over the decompositions of J in the form
? e.
J = L § .
S8 67

where 3 € N7

J —LZ (_1)L(Iﬁl+l)/2J+IﬂI+lL(lm+1)/2J!
ke =51, 2 [, 0B, 721118, T2 T2 6 P21 B 2 A T2

(5.8)

The decompositions (5.4) correspond to the values § = 2o + (0,0,1,1,0,0,1) and
g =2a+(1,1,0,0,1,1,0) in decomposition (5.7).

Although equation (3.8) is quite similar to equation (2.6), we do not obtain all
144 Regge symmetries. Indeed, when we permute extremal elements within (ey, e,,
e3) and (e,, e, e, €;), for given 3, it can happen that the sum in equation (5.7) is
no more in E, (giving j,; = | for example). The permutations that leave J in E,
can be obtained by combining the 2 x 2 x 2 permutations that leave the three pairs
(e, e;), (es, €9) and (es, e5) unchanged (so that g, and g also remain unchanged)
with six permutations that change g, into g; (1 < i € 6). So, there are in fact
8 x 6 = 48 symmetries. They include of course the 24 permutations of the vertices
of the tetrahedron in figure 1. One example of the remaining symmetries is given by
the exchange e, — e,

{jm Joz jm} ={c—:ja = Jis ij} o= doutdn ¥ intin
Jn Ju In)l, c—Jgn ¢—dn Jizl), 2

(5.9)

Noting that for

J = [J\u Juz jm] € E,

Jn Jiu In
we have
0 0o 0
Jﬁ"’“[o 0 1/2}‘5’5

we may wonder whether {J}, can be expressed in terms of the chromatic polynomial
P(Jy,n). That this can be done we show as follows. Writing equation (5.3) as

yr
U, =2 (Z“z’) Bk (5.10)
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we get be expanding S—3

—1}lel o
{J}FLZ (=1)'*eaflw(a) (5.11)

M, ayloslogloyloaglag o)

o

where w(a) = —(|a| + 1)a; — ago, and where the sum is over the decompositions
of J;, in the form

7
Jo=3 ae;. (5.12)
s

By solving equation (5.12) for « in terms of J and |«f, in a similar way as in
equation (4.3), we can rewrite w(«) in the form

w(a) = 2jp(lal +1) - A, (3.13)

where

A; = (W4 1/2) (W, +1/2) = (4 + das + F12 + 1/2) Gy + Fi3 + 512 + 1/2).
(5.14)

Substituting equation (5.13) in equation (5.11), we arrive at an expression in terms
of the chromatic polynomial

{JY, = MY 25, P(Jy, -2) = A; P(Jy, —1)). (5.15)

6. Calculation of {.J},: case J € E,

We evaluate equation (3.8) when J € E, in the same way as in the preceding section.
K runs on a set of eight values as before, but now the factors (—1)? f, f, f, f5 are of

(213223)]/2 2 2 2
\I’-} = 6—5_5“"‘"_"‘(1 + zl + 22 + 23 - 2(21 ‘+‘ 22 + 23 + 2'122 + 2123 + 2223)
~(# + e+ 2+ 20
+ 22425 + 2426 + 2427 + 2526 + 2577 + 2627)) (6.1)

which is a symmetric function in (z,, z,, z3) and (z,, z5 2 27)- It can be
remarked that, rather mysteriously, the large polynomial in equation (6.1) looks like
the expansion of S?, except that some signs have changed and that some cross
products have vanished.

By expanding S~° in equation (6.1) we obtain a formula for the 65 coeflicient
{J}, (J € E;) as a sum over the decompositions of J in the form

J=g,+ ) o (6.2)
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where o € N7

{J}s — M.}-IZ (:1)|a|(|al+ 2)'11.?((!) (63)

[ !02!03!04!015!&6!0[7!

The factor w(a) which is symmetric in the permutations of (o, aj, ay) and (ay,
o, G, Crp) IS given by

w(o) =3(1+ o)+ ay + o3) + 2, + a5 + a5 + a3)
+ol+ai+al+ Y o0 (6.4)

1€i<ji<?

We can express equation (6.3) in terms of the chromatic polynomial P(J —g,,n)
in the same way as at the end of section 5. By solving equation (6.2) for « in terms
of J and |a|, we rewrite w(ea) in the form

w(a) = -6 3 3

(6.5)

where, for J fixed, A; does not depend on any peculiar decomposition (6.2). Putting

0= jntin+tintintintine
(6.6)

T = Jnis + Jnti + Jnin

5
i:r‘
S

A, =47+ 20+ 3. 6.7)

Substituting equation (6.5) in equation (6.3), we see that for J € E, the 6j
coefficient {J}, can be expressed in terms of the chromatic polynomial as

{J}, = M7Y(-6P(J - g;,—4) + A, P(J ~ g;,-3)). (6.8)

From equation (6.3) we easily obtain that the osp(1,2) 65 symbol {J}, for J € E,
possesses the same 144 Regpe symmetries as the su(2) 6; symbol.

7. Conclusion

In conclusion, let us point out a subject where the explicit formulae obtained in this
work might be useful. The subject is the study of non-trivial zeros of the 6; by
means of Diophantine equations based on explicit formulae, as was done in the case
of su(2) 65 coefficients (see for example Beyer, Louck and Stein 1986, Labarthe 1987
and Srinivasa Rao and Chiu 1989). Examples of zeros for J € E, are given by

¢4

{J}s—,—{j J a+bj_1/2}ﬂ=o oy
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and

{ (a+b)/2 j—(b—a)/2 i }:0 (7.2)

i+(b~a)/2 (a+b)/2 a+b-1/2
where « and b are integers and j is integer or half-integer. These two 65 are related
by Regge symmetry (5.9). The vanishing of these coefficients follows from equation

(5:6) and P(J — g;,-3) = P(J — §;,—3) that is readily verified since there is only
one term in the summation of both chromatic polynomials. The vanishing of

U1,

(corresponding to a« = b = 1) for any j has been established by Minnaert and
Mozrzymas (1992b) by considering a chain of superalgebras.

Appendix

The osp(1,2) 65 coeflicients defined by Minnaert and Mozrzymas (1992a) are related
to the 67 coeflicients (3.3) by

. . . SR . . .
{-7_01 J'UZ J‘LB } = (_1)9 {J_m -7.02 -7'03 } (A1)
Jn Ji Jiz Jon Ji Juz),

with

0 =2W A +2WoA,L +2Wa A, = A A + ApAs + AgAp  (mod 2) (A.2)
where W, is defined as in equation (3.5). Equation {A.1) foltows from equation (39)
of Minnaert and Mozrzymas (1992a) by summing over all M and using their equations
(24), (38) and (A13). The equivalence of the two forms of @ given in equation (A.2)
results from relations like equation (3.2) which occurs for each coupling in the 6;.

The Racah coefficients defined by Zeng (1987a) in his equations (4.9-4.16) are
related to the 65 coefficients (3.3) by

R ons Juss dasi oz dia) = (=1)* {“".“’ in o } (A3
Jn Jiz Jui),;

where

Y= Jo + Joz + Fiz + d] + AW W5+ 2W (1 4 Ay ) 4+ 2W . (A.4)
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